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POWER ITERATIONS AND THE DOMINANT EIGENVALUE PROBLEM

JEFFERY J. LEADEF:
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dominant eigenvalue problem are analyzed from a ciscrete

dynamical systems perspective. It is shown that the method

can extract more information than the standard power method

but at greater computational cost.
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The paxoe-r iteration is the matrix iterauor,

V = B«V /liV i!

n+l n ri

j '.r o O -L Vfe-'j i r >^-n ^L e . o TTi \ tr'L *w-Oi"~ •> i_>

i i

-, I-. -A li : II ,' r- + V
.

.-. tT-.-l -! r- -.^=.— 4 —-»- T-l!—•»- T^ r "l O "'
O.I 1^-i M »l J. .=> (^HC I^Uk- J. J. l.'*rC».ll VCV VVl ll l>l Jil L _L V_' > _L

to the pouter mj&th.od. for finding the dominant eigenvalue of a

real ma J rix,

CI . 1

it. kjti rr.a t, r i

is similar

A* ; - v s\j
r.+ l ' r.-*l r.

CI. 2D

-here A is a re;.] matrix: with a dominant ei aenval ue , v is an
o

i m "<-•! aj es wi m«i-e oi an

domi nan' eigenvalue of A

the property that

: i Qfnvei-tor

id /,• is an element o

soci ate J wi t h trie

withr

H
i;

I' .v
r>+l II a.

Csep il , p. 144] D. We will show that although the power

j ciene; iy slower than the power method

can provide extra information about the dominant

eiaenvaj ubCs'J of a matrix in certain cases Ve take

cie. sc r e \- 1 u

s ys t, trm d n d l ncju i

CattractorsD in various cases Cin the spirit of [93D.

Thie iteration CI. ID is considered in a different- context a:

a special case of the [R -»[R map

V = A*V + B*V /IIV I

n+l r> n n
CI . 3D

in [101- based on work in [2] Calso reported in C31D. Further

details on the iteration C 1 . 3D may be found in [10,12,133. and

t he f or thcomi ng [41. Al though C 1 . 3D is onl y a 1 i near

perturbation of the well -behaved iteration CI. ID, it exhibits
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course, CI. ID can also be viewed as CI. S3 with a change of

nor mal i r.ati on , and much is known about the numerical method

given by C I . 2D Csee also IS, p. 3623 D.

2. The Pover Method

The power method CI. 2D has the property that if A is a

nondefecti ve matrix with a dominant ei aer.value, say ?, , and v
i o

has a nonzero projection on an eigenvector associated with

this dominant, eigenvalue, then

fj
—>a dS n

—

>oo
r. 1

and v converges to an eigenvector associated with X and with
r> l

unit / norm. If u does not have a nonzero component along
a o f v

an gi c^'uVcC ucr a s soc i a ^ e*~< wi un A- ano l ni l ni t.@ Precision

cri thine* ic is used then we must consider the eigenvalue of

laraest modulus along which v> does have a nonzero component.

In actual computations, however, a component along an

eigenvector associated with X would almost certainly be

introduced eventually and magnified in successive iterations

CI, p. 1453. The same results are found if A is defective

Cconsidering now principal vectors [7, p. 3] rather than just

eigenvectors} but the convergence is much slower.

When the dominant eigenvalue is real, the method converges

to a fixed point. However, when the dominant eigenvalue is a

complex conjugate pair, the method generally fails to

converge. Methods exist to recover information in such cases

[6, p. £57] but they tend to be somewhat involved.
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— A* v - i v li , c> = A**y ,-iiA**y II

n+i n n 00 n + 1 " n + 1 ' n 00

and in this formulation v need not be calculated until it is
r>

actually needed Cto estimate X. J . Then the iteration for v
1 "n+i

is the siine as CI. II) except for the particular / norm used in
r

the normalization. For this reason we sometimes refer to the

quantity /j in C 1 . 2 J as the sif,ed / norm.

LONIC L*BITS

If t : s nonsinqular then the points V , V , V , . . . of the12 3

G = CB*B
T
D *

VT*G*V = 1

f or all i ^ I . For ,

VT *G*V = CVT*bV|IV l!I)*G*CB*V / II V 11}
ri+l r> + l n ri n r.

= V
T
*C B

T
*G*B} *V /IIV 11°

n ri n

= V
T*7*V /IIV II"
n n n

for every n>l and for any V which is nonzero. Clearly G is
o

positive definite symmetric, and so the points V , V , V ,. . .

must all lie on the hyper ell ipse defined by

VT*G*V = 1 C 3 . 1

5

in K .

If B is singular, a similar result holds. In order to

handle simultaneously both the case where B is simple and the

case where B is defective we state the result in terms of
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Theorem 1: Suppose Bis a real square mxm matrix with 0<q<rr,

null eicenvalues. If q> and V has a nonzero component alona

a principal vector associated with a nonzero eigenvalue, then

all orb ts of the power iteration CI. 13 are constrained to a

hyper el lips© in Cm—q3 —dimensions Cf or all but finitely many

n3 . Otf r-rwise, the orbit reaches the origin in finitely many

i terati ens .

Proof: First , note that

V = B*V /WW II

1 o o

y = b*V y || V II

2 11
= B*CB*V •••l

i V 113/11 B*V /liV li li

o o o o

= &
Z*V /!IB*V I!

o o

and. in qener

for n>i . Nov let

V = B
n*V /'IIB

r
'

**V II C3.£3
r> o O

J = R *B**R

be the Jordan normal form of B for some nonsingular R

Substituting this into C3. £3 gives

V = CR*J*P" 1
3
r
'^V /IIB

r'
-1
*V II

n o o

= R*J
r
'*R

-1
*V /IIB

r'~ 1*V II

o o

= at R* |J
n
*Z C3. 33

where Z =R *V and
o o

a = l/IIB
n
**V II

n O

is a scalar Cfor each n3

.

CI earl v, if Z has no nonzero
o

component along a principal vector of J C equi val entl y , if V

has no nonzero component along a principal vector of B3 that

is associated with a non-null eigenvalue, the term J
r
'*Z in

o



undtf iiH d &.r»d the iteration stops. Othwr wise, for n

sufficiently large Cit suffices that n>m) , all Jordan blocks

in J associated with a null eigenvalue will have become blocks

of entirely zeros in J Csince these Jordan blocks are

nil potent}. Now, the principal vectors belonging to a given

Jordan "lock do not interact with the remaining principal

vectors. in the sense that if x> is a principal vector
j

associated with J CW, a Jordan block of J, then J '*u
v J

involves only a linear combination of principal vectors of J

that, an also associated with J C \~>
. Therefore for n large

enough that all nil potent Jordan blocks have become entirely

zei o submatnces, the vector

j
n
*z

o

can b^ written in terms of a basis consisting of only the

remaining C m-qD principal vectors. Thus the iteration lies in

a C m-q) -di mensi onal subspace of CP , and a suitable change of

variables c*r then be used to transform the iteration into one

of the : or m

w = C*V x-HW II

n-'i n n

where V is a C m-qj -vector for every n and C is a. real
n

nonsingular Cm-q) xC m-qD matrix. Hence, in this subspace, the

iteration is constrained to the hyperellipse determined by the

ma t r i x

_T -1
CC*C 3

Cas was shown previously for the nonsingular case) for all but

finitely many n. a

We emphasize that this is not an asymptotic result; after a
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hyperell ipse C assuming infinite precision^. We* now wish to

look at the orbits on the attract] ng hyper el 1 i pses

.

4. Limit Orbits for Nondefective Matrices

Suppose that B is nondefective and nonsingular, and lei

be a set of ei aenvector s associated with the
i

ei qenvai ueŝ •> respectively, with

|x !
> x i >

2
'

> |X I

rhen any V «ef£ may be written as
o

m
v = y o x
O ^

\ \

i = 1

where a is the component of V along x . Computing the power
V o l

iteration CI. ID by C3.2D gives
m

V = f n )
n
y i r T o \

T
X

n I l t x. I I ill
L

v - 1 J v = 1

C4. 1 J

i cjt ri-ij. .

Now suppose that B has a CrepeatedJ dominant figenva.Iu^ X
i

with multiplicity lir^m, that is.

and

A = A.

1 2

x
I

> IX
I

>
1 r + l

= A.

> IX

Removi no a factor of X from the numerator and X
i i

n-1
from the

denominator of C4.13 give;

V =r = x
n

• L x
n 1^11
X •

i
a x +

i li

• + a x + OCX s\
r r r+l

+ ex x + OCX /O
r r r+l l

.'")

r,-l

and c 1 e.- r 1 y , i n t he 1 i mi t

V —>y x

where x is a uni t vector in span<x , . . . , x > , and



T-l 111 r,-i

= C sqnC a j j -a.^
l 1

a , . . . , a 1
i j

dj

nonzero

:

C pr ovi de j that at least one of

otherwise. we beqi n the analysis anew bv consider! nc
r-t-i

Hence i 3 X >0 the iteration tends to a fixed point, and if

X <0 the iteration tends to a symmetric Cin the origin!) period

two cycle on the points ±X x.

Now suppose that B has a real positive eigenvalue X of

mui 1 1 pi i z 1 1 y p , so that

X = X =
i ?

- A

ana a real negative eigenvalue -X of multiplicity q, that

X = X
p+1 p+2

and suppose further that

IX I > IX

= X
p+q

l p+q + i

Proceeding as before, we have that
,- p p + q

V = y £ ex x ± £ °< >
n r. ^ " v \ \ i

•\. - 1

P

£ o> X
v = 1

v = p + 1
p+q
£ » x

+ ©ex xx :

p+q»l 1

OCX XX D
p + o + 1 1

k. V a. ^n /

i = p + l

,7 given in C4. EjO where the ± is positive when n is

even and negative when n is odd in the numerator, and

contrarily in the denominator. In the limit, we have that

C approx: matel yj

V y 'Cy + y 3 /' II y - y
n y

i
y
Z *\ 2

V = y -Cy - y D/lly + y I

n+i n+1 ' i 2 1 2

wher e

y = £ ex x
l " v i

V = 1
p+q

y

.

£ c* x
i = p+ i

Since A is positive, >' =X lor all ri , and so we have ct period
l n l



V = X • C v + y D / II y - y II

r^ 1 ^1 2 ^1 2

V = X • C v - y 3 / II v + y II

r> + l 11 ^2 "1 2

which in general is not a symmetric orbit Cin the origin}. We

will not in general havs II V II =X in this case, but note that
r> 1

II v

II V II = |X
r>+l 1

v II
'"'

if v - y'2 '1 2

V - y II / II v + y
1 ^2 '1 ^2

so that

liV H •
II V ||

=
n r>+i

X

in the limit of large n; the modulus of the dominant

eigenvalue is the geometric mean of the norms of two

successive iterates Cin the limits. Note that the asymmetry

of the orbit allows us to distinguish this case from the case

Vv i t ter i c A

a svmms

,.,!- , .— 1-

li mi ting orbit!) most oi the tim«

ai ways gi ves

. e. when the

r esu] ti r g asympt ot i c or bi t is i ndeed asymmetri cj .

Now let us suppose that B has a complex conjugate pair of

eigenvalues that is dominant, i.e. that X and X are complex
1 2

conjugates, and

A. >
I
'x A.

From C 4 . 13 we have

V = i- i f vn^
= /\ • lex e x

r> 1^1 1
+ o e x + C>C\ A )

2 z a i

v<r.-i>65 -v(n-l>© _,_ , ~ n-1
o<e x+ote x + ©C\ A )

1 12 2 3 1

')

where ^-argCX J. In the limit, this becomes

V =
, - , f in8 -inS "1

X • lot e x + ot e x ~-1^1 1 2 2 J
i(rrl>6 -v(n-l)6 lioe x+ae x

1 12 2 I!

C4. 33

Thus if 6 is such that expCi0!>=expCiCn+lD03 for some n Ci.e.

if X and X are both in [R for some nD then we have an
i i

a



n

the orbit is aperiodic on the underlying hyper el 1 i pse. If the

orhjt is period n then we note that the geometric mean of the

norms o: n consecutive iterates tends to | A
|

, as is easily

seen by writing out tne product of n iterates and noting the

cancel 1 ati on

.

In a similar way, if B has two p^airs of complex conjugate

eigenvalues of equal modulus and all other eigenvalues of B

have lesser moduli , then we have a situation like that of

C4.3D save that there is an additional angle to be considered.

Henc< if the firsi pair alone would give a periodic orbit of

period •,, and the second pair alone would give a periodic

orbit of period q, then the orbit of the iteration will be

periodic with period n=lcmCp,qj. If either pair alone would

give an aperiodic orbit , then the orbit is aperiodic. Again

the cieoi e'.ric mean cf n consecutive iterates tends to |
X.

i

when th~ orbit is asymptotically period n. The obvious

general i lati on holds for more than two complex conjugate pairs

of equal moduli. In particular, in an even—dimensional space,

say of dimension £r , choosing B to be a £rx2r matrix with r

complex conjugate pairs of eigenvalues, all of equal modulus

and such that

\
r

'

«? 0?

for all i =1 , . . . , £r and n=l ,2,3,... gi ves a method for

generating a sequence of points on the ellipse given by C3.1D

by iterating CI. ID with an arbitrary nonzero V .

If in addition to some number of complex conjugate pairs of

eigenvalues with equal modulus there are some number of

1 n



IIiv_-.i_i oj. vfe <3uj>u- <—'. iicyta ^i >cr J te<^-L ti Jcli >ai ^cj; v_jj. i^uc .^ Cw.,— JilOv_iUj- U.j ,

then it is immediate thai the iteration is aperiodic if any

compl e>: conjugate eigenvalue gives an aperiodic orbit, and

periodic otherwise, with period given by the least common

multiple of the individual complex conjugate pairs and the

period tv,'c> due to the negative real eigenvalues, if present.

We have established the following theorem:

Theorfm L: Consider the iteration

v = b*v ,
II v i;

n+l n n

where & is a real mxm nondefective matrix and V is a oi ven
o

nonzero m-vector . Suppose- that. V has a nonzero component
o

alone an eigenvector of & which is associated with an

eigenvalue of B with maximum modulus. Then all iterates for

n>rn are constrained to an ellipse in a subspace of CF
" of

dimension rankCBJ, and the asymptotic behaviour oi the

iterates is as follows:

i J if B has a multiple r^^l dominant eigenvalue, then the

iteration tends to a fixed point;

ii~> if B has a multiple negative real eigenvalue, then the

iteration tends to a symmetric period two cycle;

iii'J if B has both positive and negative real dominant

eigenvalues, then the iteration tends to a period two cycle;

iv) if B has a complex conjugate dominant eigenvalue, then

the iteration tends to a period n cycle if the eigenvalues are

a multiple of an nth root of unity and is aperiodic otherwise;

v3> if B has multiple complex conjugate dominant eigenvalues

and multiple real dominant eigenvalues, then the iteration

tends to a periodic orbit with period equal to the least

11



ei genval ues when all eigenvalues give rise to periodic orbits,

and is aperiodic otherwise.

5. Limit Orbits for Defective Matrices

The c oove results are essentially unchanged if B is

defective. Let B be defective and let x be an eigenvector

associated with a dominant eigenvalue X. Let y be a linear

combination of principal vectors of B associated with X. Then

the i ter ati on

n
B y

converges to x as OQlSrO CIO, p. 883 , [15, p. 5823 . Since the

principal vectors corresponding to distinct eigenvalues are

noni interacting, it is clear that the qualitative results of

Theorem £ are unchanged, althouah the convergence to the

asymptotic orbits may be exceedingly slow. Hence Theorem £

remains valid if we allow B to be defective, and require that

V have a nonzero projection on a principal vector C'f B

associated with an eigenvalue of maximum modulus. If

J=R »*B*R is the Jordan normal form of B with the dominant

eigenvalue C of multiplicity p!) in the first blockCsJ along the

diagonal , then these vectors have the form

R*e
I

C i =1 , . . . , pD , where <e > is the natural basi s f or R .

5. The Power Iteration
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method for the numerical determinaiion of the modulus of the

dominant eigenvalue of a real matrix when the resulting orbit

is periodic. If the orbit has period n>l , then the modulus is

approximately the geometric mean of the Euclidean norms of n

consecutive iterates. Additionally, the argument is such that

the nt_h power of both the eigenvalue and it's conjugate are

positive real numbers, so that the desired eigenvalue \ is

gi ven by

X = \X | w C6. 13)

for som*-' i =1 , . . . , n, where to , . . . , to are the nth root s of
1 n

unity. If the orbit is aperiodic, the dominant eigenvalues

are comp ex conjugates and fail to satisfy C6.1D.

As an example of the use of the power iteration, consider

the mat r i

x

which hr-3 eigenvalues ±V2. In 114 p. 98] it is shown that the

powfr method CI. 21) applied to this iteration Cwith initial

Tvector ( 1,1!) D settles into a period two cycle on the two

vectors

i.e. thfe method fails. The power iteration CI. ID applied to

this matrix yields asymptotically the period two cycle Cfrom

the same initial vector)

Since this is an asymmetric period two cycle, from Theorem 2

it follows that there are both positive and negative dominant

eigenvalues, and that the modulus of these eigenvalues is



IX
I

= C II x II • II x II

D

1 '" 2

1 2

= t c vs /-/si c z-/z/V5j ]

1XZ

Hence the eigenvalues of A are ±V2, as expected. Similar

results would be obtained using any norm in place of the

Euclidean norm in CI. ID.

7. Conclusions

The power iteration is certainly slower than the power

met hoc C due to the need to calculate a Euclidean vector no; m

rather " nan simply locating an element of the vector with

maximum modulus) , and additional information can be gained in

only a restricted set of cases C primarily when the dominant

eigenvalues are complex conjugates and real multiples of a

root of unity). Nonetheless, in tnese cases it does provide

useful information about the eigenvalues, and in more general

case; i may provide some insight as well. For example,

inspection of the elliptical orbits C Theorem 1) can be used to

provide information about the existence and multiplicity of

null eigenvalues. For these reasons the power iteration may

be useful in certain circumstances. Of course, the power

iteraticn/power method is in some sense the basis of most

iterative methods for the eigenvalue problem [15] and so this

analysis may be useful in the analysis of more practical

algorithms for this problem.

We mention that computer gr a phi ca.j evidence seems to indicate

that the unsigned power method



- / _^-. . i; , . i r t -i
"

y ~ t->>*y ' uy n ^ . . a -
r>-»l r* n 00

has the proDerty that all iterates lie on a / conic- C wj t h
oo

respect to some rotation of the axes3 asymptotically. As

noted in [&, p. 3621 , however, the use of the Euclidean norrr, in

CI. 13 greatly facilitates the analysis of the power iteration

Csee also [5, p. 351 3 3 and we have been unable to show a

corresponding result for the unsigned power method C7.13. The

analysis of cases in Theorem £ did not depend on which norm

was use ' in CI. 13 and as such it holds for C7. ID as well
;

therefore the comments in §6, excepting those about the t
2

conic orbits, a _ e equally applicable to the unsigned power

method, which is no more costly than the usual power method

Crequinng only thai an extra absolute value be taken—bui

t. hi s would be done during the corresponding search for fj 3.

Although using CT.13 in place of C 1 . 23 means that the

ai goi j thi will not converge Cin th usual sense"' in the case

of a do- i riant negative real eigenvalue, the method, properly

inter pre ,-ed Csee also [6, p. £573 3, would avoid some of the

problems encouni *-- e i when using the power method. For the

matrix A given in C6 £3, the unsigned power method C7. 13, with

Tinitial vector CI ,13 , gives a period two cycle on the vectors

and ag*in the fact that this is an asymmetric period two orbit

implies that the eigenvalues of A are ± j
X.

| , where

|X| = C II x II • II x II 3
1/Z

1 00 2 00

= Cei • 13

= V2

as expected. This type of reasoning could easily be



ri »_ ^—• j pjiwjr cxt. tr ^ i Ti x. >^ ex sionuorc pow<^r mtr^iio 1
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